Advisory on Software Bill of Materials and Real-time
Vulnerability Monitoring for Open-Source Software and Third-
Party Dependencies

Introduction

1. The integration of Open-Source Software (OSS) in software development
introduces significant cybersecurity challenges, particularly regarding vulnerabilities in
third-party dependencies. Notable incidents, such as Log4j and Heartbleed, underscore
these risks. On Log4j, many organisations struggled to assess system compromises due
to a lack of visibility into their software components and dependencies, with delayed
responses to discovered vulnerabilities. On Heartbleed, it affected the widely used
OpenSSL cryptography library, leading to the theft of 4.5 million medical records from a
major overseas hospital chain.

2. These dependency threats are exacerbated by extent of third-party dependencies
and critical vulnerabilities found in software development projects. According to studies,
there are on average 68.8" dependencies per project and 5.12 critical vulnerabilities in an
application. If developers are unaware of the full composition of their applications, the
risks of cybersecurity breaches are significant. In the light of such trends, there is an
impetus for developers to easily identify and address OSS dependencies to mitigate
cybersecurity risks.

Intended audience of advisory

3. The advisory is intended for all software developers, especially those who
incorporate OSS and third-party dependencies into their projects. While many
developers are aware of cybersecurity risks, they may not have the resources and
guidance to enforce cybersecurity during software development and implementation. To
aid developers, the advisory offers guidance on a sustainable and automated approach
to vulnerability management through Software Bill of Materials (SBOM) and real-time
vulnerability monitoring.

" https://chenbihuan.github.io/paper/icsme20-wang-lib-empirical.pdf
2 https://www.helpnetsecurity.com/2022/10/04/when-transparency-is-also-obscurity-open-source-
security/

Value proposition of SBOM and real-time monitoring of vulnerabilities

4, The traditional way of manually managing OSS dependencies is inefficient and
prone to errors. Furthermore, developers must sift through complex codebases to
identify and fix vulnerable software components.

5. Generating Software Bill of Materials (SBOM) ensures developers are not
using known vulnerable dependencies and provide them full visibility into software
components. SBOM provides a structured and formal record of components used to
build software. It equips organisations with a clear view of their software environment,
ensuring that vulnerabilities can be managed more effectively. Through the integration of
SBOM tools into software development workflows, developers can automatically track
each component from the start, reducing manual effort and human error. It enables them
to significantly reduce technical debt by identifying outdated or vulnerable components
much earlier, in turn decreasing future remediation workloads.

6. SBOM also improves response times by allowing developers to quickly
identify and fix vulnerable components and collaborate across the organisation for
holistic vulnerability management. This streamlined process not only minimises
complexity but also fosters collaboration among developers and cybersecurity
professionals, allowing cybersecurity risks to be addressed proactively without stifling
innovation. If SBOM is integrated into CI/CD pipelines, it allows real-time monitoring of
new vulnerabilities through automation of SBOM generation, signing and alerts. The
SBOM can also be used to foster collaboration across teams, including SecOps, Incident
Response (IR) and development teams for holistic vulnerability management and
improved response times.

Three step approach to managing vulnerabilities through SBOMs

)
G
1S e B TSNS
A N1
\ 7\ Y S
N OS2
Choose a tool which Use the tool to Manage vulnerabilities by
can accurately identify generate a SBOM removing or updating
software components compatible with vulnerable versions.
and dependencies industry standards

Figure 1. Three step approach to managing vulnerabilities through SBOMs

2

7.

8.

The three-step approach is as follows?:

Select tool: The chosen tool should accurately identify and list components
as well as direct* and indirect® dependencies of the software. The tool should
also integrate seamlessly with continuous integration/continuous
deployment (CI/CD) pipelines such as GitHub Actions, GitLab CI/CD?® or
equivalent software.

Generate and sign the SBOM: The tool should be used to generate an SBOM
that complies with industry standards such as CycloneDX or SPDX’. Signing
the SBOM after its generation ensures authenticity and provides assurance
that it originates from a trusted source. Developers should leverage on
available tools® to publish signed records into transparency logs, enhancing
trust and verifiability through immutable records of signing events.

Proactive vulnerability management: The generated SBOM should be
published to a secure repository and automatically ingested by tools like
OWASP Dependency-Track® for continuous vulnerability monitoring and N-
day vulnerability identification.

As the software development environment varies for each system, developers

should also take note of the following practical considerations:

The SBOM is only as comprehensive as the manifest files generated. If the
codebase includes obscure or less common programming languages, some
dependencies may not be detected,;

For SaaS and closed-source software, developers should request the
SBOMs from their third-party providers as these SBOMs provide the most
comprehensive coverage of the software components and dependencies. If
developers are unable to obtain SBOMs from their third-party providers, the
selected SBOM generation tool need to be able to perform supplementary
checks in the respective environments. In particular, SaaS software could use

3The approach is adapted from existing best practices found in sources 1,3 to 6 of bibliography.

4 Direct refers to software components that are explicitly required by the code.

® Indirect refers to software components required by the direct dependencies.

8 GitHub Actions and GitLab CI/CD are CI/CD tools to automate workflows like building, testing, and
deploying code.

’These are industry standards for SBOM creation, distribution, and consumption, enabling interoperability
and integration into existing workflows.

8 An example of such a tool is Sigstore, which provides signing, verification, and provenance checks to
secure Open-Source Software distribution.

® OWASP Dependency-Track tracks and identify software vulnerabilities through SBOM analysis.

3

runtime SBOMs '° | capturing dynamically loaded or run-time injected
components during execution. For closed-source software, binary-based
SBOM tools " could be used to create an inventory of the software
components used. Such tools inspect the compiled binary code, which is the
final product of the software. Once developers discover vulnerabilities
through the SBOMs, they need to inform their third-party providers to
remediate them;

e Developers need to verify identified vulnerabilities for exploitability as
the vulnerabilities may not be relevant in their software development
environments. Without appropriate verification, there could be a high volume
of vulnerabilities surfaced through the SBOM and developers risk being
overwhelmed with false positives and time spent on subsequent remediation.
Developers should start the verification process by using industry filters such
as CISA’s Known Exploited Vulnerabilities (KEV)'? that only alerts on CVEs that
are actively exploited. Once the vulnerabilities are filtered, vulnerabilities can
be assessed for the likelihood of being exploited through the Exploit Prediction
Scoring System (EPSS) 3. After identifying vulnerabilities that are likely to be
exploited, they can be prioritised for remediation using Common Vulnerability
Scoring Systems (CVSS), which rates the severity of vulnerabilities.

Automating capabilities in code repositories platforms to manage OSS
vulnerabilities

9. Both commercial and Open-Source Software projects commonly rely on open-
source dependencies, typically hosted on code repository platforms such as GitHub and
GitLab. As central hubs for OSS development, GitHub and GitLab are used by developers
who collaborate on projects of varying scope and complexity. Given the widespread use
of such code repository platforms, managing vulnerabilities are even more critical for
maintaining a secure software ecosystem. Such environments provide automated
workflow functionalities on managing vulnerabilities, with automation enabling a
seamless integration of security practices into the development process.

© Runtime SBOMs requires the system to be analysed when running. Some detailed information may be
available only after the system has been run for a period of time until the complete functionality has been
exercised. Example of runtime SBOM tools are Anchor Syft and Slim.Al.

" Example of binary-based SBOM tools are Black Duck Binary Analysis and Tern.

12 CISA’s Known Exploited Vulnerabilities (KEV) is a catalogue of actively exploited vulnerabilities to help
prioritise security remediation.

'3 Exploit Prediction Scoring System (EPSS) is a predictive model that scores the probability of a software
vulnerability being exploited, aiding in prioritising security responses.

4

10. Developers should use tools such as GitHub Actions and GitLab CI/CD that
allow for the automated creation and vulnerability checking of SBOMs. While SBOM
signing is not a native feature, external tools ' can be integrated into the workflow. Refer
to Annex Aforthe full script that automates these actions for GitHub Actions and a similar
workflow can be implemented for GitLab CI/CD (Annex B).

11. Developers should either remove vulherable components if the
functionalities provided through these components are not crucial or update these
components to non-vulnerable versions. Developers should thoroughly test their
applications to verify the application works as intended and update the SBOM
documentation to record which components were removed and updated. This approach
enhances the cybersecurity of the software and protects users from known exploits.

12. Developers should publish SBOM, its signature and certificate alongside the
digital files. This allows downstream users in the software development ecosystem to
easily access and verify the SBOM, ensuring that they are working with a secure and
authentic version of the software. Users can also leverage the SBOM to continuously
monitor for new vulnerabilities.

Real-time monitoring of vulnerabilities through OWASP Dependency

Track

13. OWASP Dependency Track (DT) provides real-time vulnerability monitoring
capabilities through SBOM ingestion and continual checking against current threat
intelligence. OWASP Dependency Track (DT) goes beyond basic scanning by
incorporating the Exploit Prediction Scoring System (EPSS), allowing developers to
prioritise vulnerabilities based on their likelihood of exploitation. Refer to Annex C for
more details on the deployment of OWASP DT.

14. Developers should integrate the OWASP DT tool into CI/CD pipelines for real-
time monitoring, consistent automation of SBOM generation and signing, and alerts
for new vulnerabilities. Developers should securely store signed SBOM into centralised
repositories to support collaboration across teams, including SecOps, Incident
Response (IR) and development teams. In addition, developers need to establish
governance policies for SBOM storage, access control and lifecycle management in
collaboration with their Chief Information Security Officers (CISOs).

4 An example is Cosign, which is a tool to sign, verify and attest software artifacts securely.

5

Conclusion

15. SBOMs and real-time monitoring of vulnerabilities provide developers a
sustainable and automated approach to address risks posed by Open-Source Software
(OSS) and third-party software components, in turn enhancing the cybersecurity posture
of the software supply chain. Such an approach allows developers and system owners to
have visibility on software components and dependencies and improve response times
to address vulnerabilities.

Acknowledgement

16. This advisory was jointly developed by the Cyber Security Agency of Singapore and
OWASP Foundation.

CSR (A)owasp

SINGAPO

Disclaimer

17. The information and advice contained in this documentis provided "as is" without
any warranties or guarantees. Reference herein to any specific commercial products,
process, or service by trade name, trademark, manufacturer, or otherwise, does not
constitute orimply its endorsement, recommendation, or favouring by the Cyber Security
Agency of Singapore, OWASP Foundation or GitHub. This document shall not be used for
advertising or product endorsement purposes.

List of References

S/N | Document Source Year of
Publication
1 | The Minimum Elements for a Software Bill of NTIA 2021
Materials (SBOM)
2 | Addressing Cybersecurity Challenges in Open- OpenSSF 2022
Source Software
3 | Guidance on Introduction of Software Bill of METI 2023
Materials (SBOM) for Software Management
4 | Recommendations for Software Bill of Materials NSA 2024
(SBOM) Management
5 | Documentation on OWASP Dependency-Track OWASP 2024, v4.11
6 | CycloneDX Authoritative Guide to SBOM OWASP 2024, 2"
edition

Annex A — Sample workflow. yaml script for GitHub Actions

On every code commit to the repository, this workflow script will create an SBOM by
importing and using an open-source tool's. The components, its version numbers and
ecosystem will also be displayed on the console. This SBOM is signed'® as an arbitrary
binary large object and a signature with certificate is generated. Finally, the SBOM is
ingested to check the components for vulnerabilities. The components, vulnerable
version, fixed version, ecosystem, security advisory and criticality of vulnerability will also
be displayed on the console.

To start the workflow, create a .yml file in ./github/workflows/, for example, SBOMgen-
VA.yml, with the sample script (shown below) that provides the necessary actions for the
workflow to run.

. # Workflow name that appears in the GitHub Actions Ul
. name: Generate, Sign, and Commit SBOM

1
2

3.

4. # Trigger the workflow on a push to the 'main’ branch
5.o0n:

6. push:

7. branches:

8
9

- main
. workflow_dispatch: # Allow manual triggering of the workflow

10. # Define jobs in the workflow

11. jobs:

12. #Job for generating and signing the SBOM

13. generate-and-sign-sbom:

14. runs-on: ubuntu-latest # Specifies the runner environment
15. permissions: # Sets permissions for the GitHub token
16. packages: write

17. id-token: write

18. contents: write

19. steps:

20. -name: Checkout code # Checkout the repository code
21. uses: actions/checkout@v2

'8 Syft is an example of a tool that can identify and list both direct and indirect dependencies and integrate
seamlessly with GitHub Actions. Alternatives include but are not limited to Tern, CycloneDX Generator and
SPDX SBOM Generator.

'8 Cosign is an example of a tool that can sign an arbitrary binary large object. Alternatives include but are
not limited to Notary, OpenSSL, Sigstore Rekor.

7 Grype is an example of a tool that can ingest SBOMs in different formats and output additional
information for the detected vulnerability like the relevant CVE or security advisory entry with a criticality
rating. Alternatives include but are not limited to Trivy and Clair.

9

22.
23. - name: Install Syft # Install Syft for generating SBOM
24, run: |
25. # Download and install Syft script from the official source
26. curl -sSfL https://raw.githubusercontent.com/anchore/syft/main/install.sh | sh
-S -- -b /usr/local/bin
27. #Verify Syft installation
syft -v
28. -name: Generate SBOM in CycloneDX format # Generate the SBOM
29. run: |
30. # Generate SBOM from the repository content and save it in CycloneDXJSON
format
31. syft. -o cyclonedx-json=log4shell-vulnerable-app-CDX.json
32.
33. -name: Upload SBOM as an artifact # Upload SBOM as a build artifact
34. uses: actions/upload-artifact@v2
35. with:
36. name: SBOM
37. path: logdshell-vulnerable-app-CDX.json
38.
39. -name:Install Cosign # Install Cosign for signing artifacts
40. run: |
41. # Download Cosign, make it executable, and move to local bin
42. COSIGN_VERSION="y2.2.3"
43. wget
https://github.com/sigstore/cosign/releases/download/${COSIGN_VERSION}/cosign-
linux-amd64 -O cosign
44. chmod +x cosign
45. sudo mv cosign /usr/local/bin/
46.
47. - name: Sign the SBOM and generate certificate # Sign the SBOM and generate a
verification certificate
48. env:
49. COSIGN_EXPERIMENTAL: "1"
50. run: |
51. # Use Cosign to sign the SBOM, specify OIDC issuer, and output both signature
and certificate
52. cosign sign-blob --oidc-issuer="https://token.actions.githubusercontent.com"
\
53. --yes \
54. --output-signature logdshell-vulnerable-app-CDX.json.sig \
55. --output-certificate logdshell-vulnerable-app-CDX.pem \
56. log4shell-vulnerable-app-CDX.json
57.
58. -name: Commit SBOM, Signature, and Certificate to repository # Commit the
SBOM, signature, and certificate to the repo
59. run: |

60. # Configure git with user credentials, add files, and commit them to the
repository

61. git config --local user.email "<your_email@example.com>"

62. git config --local user.name "<Your GitHub Username>"

63. git add logdshell-vulnerable-app-CDX.json log4shell-vulnerable-app-
CDX.json.sig logdshell-vulnerable-app-CDX.pem

64. git commit -m "Add and Sign SBOM for log4shell-vulnerable-app"

65. git push

66.

67. #Additional job for vulnerability analysis

68. vulnerability-analysis:

69. needs: generate-and-sign-sbom # Dependency on the first job

70. runs-on: ubuntu-latest

71.

72. steps:

73. -name: Checkout code # Checkout the repository code again for analysis
74. uses: actions/checkout@v2

75.

76. -name: Download SBOM artifact # Download the previously uploaded SBOM
artifact

77. uses: actions/download-artifact@v2

78. with:

79. name: SBOM

80.

81. -name: Install Grype # Install Grype for vulnerability scanning

82. run: |

83. # Download and install Grype script from the official source

84. curl -sSfL https://raw.githubusercontent.com/anchore/grype/main/install.sh |
sh -s---b/usr/local/bin

85.

86. - name: Runvulnerability analysis # Perform vulnerability analysis on the SBOM
87. run: |

88. # Use Grype to scan the SBOM and output results in a table format

89. grype sbom:logdshell-vulnerable-app-CDX.json -o table

90.

11

Annex B — Sample workflow. yaml script for GitLab CI/CD

To start the workflow, create a .gitlab-ci.yml file at the root of your repository with the
following content with the sample script (shown below) that provides the necessary
actions for the workflow to run:

1.stages:
2. - generate_and_sign_sbom
3. -vulnerability_analysis

4,
5. generate-and-sign-sbom:
6. stage: generate_and_sign_sbom
7. image: ubuntu:latest
8. script:
9. - apt-get update && apt-get install -y curl wget sudo git
10.
11. #Install Syft
12. - curl-sSfL https://raw.githubusercontent.com/anchore/syft/main/install.sh | sh -s
---b /usr/local/bin
13. # Verify Syft installation
14. -syft-v
15. # Generate SBOM in CycloneDX format
- syft . -o cyclonedx-json=log4shell-vulnerable-app-CDX.json

Upload SBOM artifact
- echo "Uploading SBOM artifact"
- mv log4dshell-vulnerable-app-CDX.json $CI_PROJECT_DIR/

Install Cosign

- COSIGN_VERSION="y2.2.3"

- wget
https://github.com/sigstore/cosign/releases/download/${COSIGN_VERSION}/cosign-
linux-amd64 -0 cosign

- chmod +x cosign

- sudo mv cosign /usr/local/bin/

Sign the SBOM and generate certificate

- export COSIGN_EXPERIMENTAL=1

- cosign sign-blob --yes --output-signature log4shell-vulnerable-app-CDX.json.sig -
-output-certificate logdshell-vulnerable-app-CDX.pem logdshell-vulnerable-app-
CDX.json

Commit SBOM, Signature, and Certificate to repository
- git config --global user.email "<your_email@example.com>"
- git config --global user.name "<Your GitLab Username>"

12

35. -gitadd log4shell-vulnerable-app-CDX.json log4shell-vulnerable-app-
CDX.json.sig logdshell-vulnerable-app-CDX.pem
36. -gitcommit-m "Add and Sign SBOM for log4shell-vulnerable-app"
37. -git push origin $CI_COMMIT_BRANCH
38. artifacts:
39. paths:
40. - log4dshell-vulnerable-app-CDX.json
41. - log4dshell-vulnerable-app-CDX.json.sig
42. - log4dshell-vulnerable-app-CDX.pem
43.
44, vulnerability-analysis:
45. stage: vulnerability_analysis
46. image: ubuntu:latest
47. script:
48. - apt-get update && apt-getinstall -y curl wget sudo git
49,
50. # Download SBOM artifact
- cp $CI_PROJECT_DIR/log4shell-vulnerable-app-CDX.json ./
52.
53. #Install Grype
54. - curl-sSfL https://raw.githubusercontent.com/anchore/grype/main/install.sh | sh
-s -- -b /usr/local/bin
55.
56. # Run vulnerability analysis
57. -grype sbom:log4shell-vulnerable-app-CDX.json -o table
58. dependencies:
60. - generate-and-sign-sbom

13

Annex C — Deploying and using Dependency-Track

Deploying DT using the provided Docker image from dependencytrack.org is the most
convenient way to get started. The following commands are the easiest way to deploy DT,
assuming a Docker installation has been setup properly:

Downloads the latest Docker Compose file
curl -LO https://dependencytrack.org/docker-compose.yml

Starts the stack using Docker Compose
docker-compose up -d

After deploying DT and logging into DT at http://localhost:8080/ with the default
credentials (username: admin, password: admin), create a project with the appropriate
details. Select the created project and upload the SBOM in the ‘components’ tab. After
completion of ingestion and vulnerability database updating, DT will automatically and
continuously scan for vulnerabilities and display known vulnerabilities in the ‘audit
vulnerabilities’ tab. This process can be repeated for other projects and a global view of
all components in all projects is automatically collated in the ‘components’ tab in the

sidebar. Developers are advised to check the known vulnerable components and
prioritise remediation. Refer to DT’s official documentation at
https://doc.dependencytrack.org/getting-started/ for more details on getting started.

For more advanced users, DT includes a built-in API that integrates seamlessly with
Continuous Integration/Continuous Delivery (CI/CD) pipelines. This feature allows
developers to automate ingestion of SBOMs and vulnerability checks as part of their
Software Development Lifecycle (SDLC) workflow, enabling a more robust security
posture. Additionally, the workflow script can include an optional step to publish the
generated SBOM directly to DT for continuous monitoring and analysis, ensuring that
vulnerabilities are tracked and managed throughout the software's lifecycle.

14

